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ABSTRACT

This investigation uses ballistic theory in the analysis of the behav-

ior of an electron beam passing through alternate gap and drift regions,

with the gap regions having excitation fields. The analysis develops the

response to a complicated frequency spectrum of the drive signal. First

the double frequency case is analyzed. Relativistic effects are taken into

account and their influence on the current response studied. Then the

theory is extended to the more complicated case of a Gaussian spectrum.

The first-order bunching theory is used to plot current response curves.

An estimate of the pulse distortion resulting from nonlinear electron beam

dynamics is obtained from the curves. It is also of interest that the envel-

ope shape of the exit current is almost completely independent of the r-f

frequency. The large-signal, finite-gap analysis is carried out, and the

results extended to the multiple-cavity klystron.
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I. INTRODUCTION

A. OBJECTIVE

Many stages of development followed the invention of the klystron

by the Varian brothers in 1939.. Until now, most of the analysis and dis-

cussion has been limited to the case of a continuous-wave drive signal.

The purpose here is to open the door to investigation of the numerous prob-

lems associated with the use of pulsed microwave amplifiers for amnplifi-

cation of nanosecond pulses whose pulse lengths are of the order of several

cycles of the r-f carrier frequency. The main concern is with high-power

amplifiers 'with average power capabilities comparable to conventional

pulseda miplifiers; thus for comparable repetition rates, the peak power

would be higher by the inverse ratio of the pulse lengths.

Several factors may be important in determining the pulse response

capability of high-power amplifiers- such as the klystron. It follows, from

Fourier analysis, that a long pulse of constant carrier frequency includes

a narrow bandwidth, while a pulse that is short in terms of cycles of the

r-f carrier has a broad frequency spectrum. The spectrum of the long

signal can, however, be significantly broadened by introducing modulation.

klauder3 showed that to utilize the transmitting tubes efficiently, this modu-

lation must take the form of frequency modulation. By this method one can

introduce the frequency-spread characteristic of a short pulse within the

envelope of a long-duration signal. Klauder4 also showed certain advantages

of short constant-frequency r-f signals over the long signals with linear

frequency modulation. This emphasizes the importance of nanosecond pulse

studies. One of the problems that arises is that the broad frequency spec-
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trum associated with the short pulses might be affected by the bandwidth

of the circuits associated with the amplifier, which will limit the response

and therefore cause distortion of the pulse. Operation of the amplifier at

maximum efficiency entails nonlinear behavior in the electron beam dy-

namics. This will cause the frequency spectrum of the output pulse to be

altered from that of the input pulse and produce distortion. Ballistic theory

will be utilized to determine the response of klystrons to the complicated

frequen-cy spectrum and lead to an estimate of the pulse distortion.

Studies in this direction will provide a solution for the conflicting

requirements of long range and high resolution in radar systems. Re-

solution depends on the transmitted pulse bandwidth, and nanosecond pulses

will, no doubt, satisfy the conditions for high resolution. For long-range

capabilities, large power requirements are necessary; hence, high-power

nanosecond pulses are expected to solve the two conflicting radar require-

ments. Radar systems that yield simultaneous information about the range

and velocity of a target would be useful in certain applications. Klauder 4

showed an inherent ambiguity in a simultaneous determination of both the

range and velocity of a moving target, when using the so-called "chirp"

scheme. If the transmitted signal with an ambiguity function that is highly

peaked only at about t = 0 exists, then high resolution is expected in both

range and velocity. Using analogs from quantum mechanics, Klauder showed

that the sequence of signals, f(t), that satisfy these conditions are:

1/4 ¥t 2

f(t) = 1/ Hn(b'I) e 2 t

1/2 n: n
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where Hn(Z) represents the nth Hermite polynomial defined by

z2 dn z

H n(z) = (-i) e n - e 2

dzn

When n is taken equal to zero, the Gaussian envelope, on which this analy-

sis is chiefly based, results. Further details on the Gaussian spectrum are

given in Appendix A.

B. MODEL

Since a one-dimensional model of the electron beam is used, a uni-

velocity electron beam is incident at the entrance plane z = 0, moving in

the +z direction in confined flow. This assumption of a very strong longi-

tudinal magnetic field will depress the potential at the center of the beam

so that peripheral electrons travel faster than axial ones, introducing a

phase difference between the radio-frequency current carried by different

beam segments. This difficulty is overcome by assuming the existence of

a thread of positive ions along the axis of the beam, just sufficient to neu-

tralize the charge density of electrons; thus, the effects of depressing the

potential across the beam caused by space charge are neglected, and so

also are variations in electron velocities caused by thermal noise. Elec-

tron velocities are assumed small compared to the velocity of light, per-

mitting a nonrelativistic treatment of the problem. In the analysis of a

double-frequency signal, however, the change in response caused by rela-

tivistic effects is studied. The electric field is assumed constant through-

out the cross section of the klystron beam.

-3-



II. RESPONSE OF KLYSTRON TO DOUBLE-FREQUENCY INPUT

In this section, the response of a klystron to a double-frequency

input will be treated. The signal is V = V sinw t + V sinw t. The

0~1 1 2A o IA A2 I IA

S I * I

GAP GAP

I I DRIFT REGIONI i I I
I I I I
I i I I

I I I I

four planes of reference in a two-cavity klystron are represented by

A0 , A1 A29 A and the subscripts o, 1,2, 3, respectively will be

used to identify quantities in the respective planes.

A. FIRST GAP

Applying Newton's second law of motion, we have

d 2 eVI' eV2
dz - 1 nt + 2sinct

dt md md1

therefore

dz -eV 1  eV
- md coslt coswt + k

dt mdlW1 I md:W 2 1
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where k is a constant to be determined from the initial condition; at t = t1 0

the velocity dz/dt = u 0 ; therefore

dz e V , r co s w t 0 Co s WIt e V 2 [ coscA~ t o cose w~ t
u+--I - +dt 0 mdI oW mdl W 2 w2

(2. 1)

Integrating again gives,

[eV, cos(Ai t eV cosw2 t[ o 1L-d lo + z __._-_

mdI W md '2 J

VeV 1  eV_2md sinIt + r WdlY02  sinw2 + k2

where k is a constant, evalua'ted by inserting the initial condition: at

t = to, the distance z = ; therefore

lu eVl cos~ 1 t° eV 2

z LuO + + e cosc t (t t

md WImd I1W2 2 to](7t0
e VdI el Vdl2
eV 1  eV2

" " 2 (sinwit- sin to - 2 .(sinw t rsin.wt)
md W2 1 1 t0) 2

4~ 11 2d2

Putting

V 1  V 2  W1•idI Wd

V al V - Z' u E-- €1 I'
0 0 0 0

gives

u l° QU° ]
z = + , u cos W t + a cost (t - +oo 2o0 0
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a2+ -7 -" (sinw 1 to - sinwot) + 2 0 tsi ooz - sin oo t) . (2.2)
o l b2f(slncii 2  2'

The distance is z=d at t=tI , where

t t + r,

i= transit time in first gap d= + 5-
0 0'

1 = correction factor,

W +W
1 m+n , m and n being two numbers defined by -wI = mw0 and

W2 .= nw•

Substitution of this condition in Equation (2. 2) gives,

d 0uo +-'- cos Ito + cosWt
2 • I, 2 ý, '

aU aIu
+ (sinwlto- sinwlt) + o (sin to-sinw2t) (2. 3)

2ý 0- 1 2@i 2.0

The following assumptions are made:

sin ( "1)\ sin (,

cs in 1ot- ." -- 61 = wzt - }

sin ( 'W sin (
cos 12t - o- 6 1,) 2 co
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The products a 81 and .256 are negligible, and Equation (2.3) reduces to,

uo&1 alIdI , 0dI a+ , ]u
C 'o 1w Cos[sin -"1 t sinw t

wU0 2) 2] II

u+ "- [sin (w2 t " c1) - sinwot

1 2

1 osI), a2 di c ,o. . ,
= d" o tc + sin-wt sin' 1  + d cssw't sino 2 tsinOl)

. -t-Co,[sin~l t cos (Ctsonsi _ sin t]

+ 2o [sinw t cos cos czt sin ) - sinw t]

24 IS" 2

therefore'

81 2i , [(I - Cos 1 sin 4)) sinwlt + (sin 41 - co's c1) cos 1 t]

+ -- ' [(I tcos 1 - 41 sincPl) sinw2 t + (sin C1 - 4i cos 1)cOSWztlZ4) in. ,.

(2.4)

Thus, the expression for the correction factor as given.by Equation (2, 4)

is a superposition for each frequency, considered separately, The induced

current is calculated by Ramo's theorem; i. e.

t t
1 dzo eV I

0 -- + - C 'Olt)
J, d___ 0 Wi1t-r 1  tJ•
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/ V.+ v cosw 2 t cos d
mdl 2 0d

-I{ui+± [ sin 1 t -sinw1 (t - -r, )sit
0 u r +]~ cs

d u_._0o - 1)

+ ?_'u° -sin 2 t-sin•,(.t -I,) -r cosw t
1J 2

After simplifying, and in the process neglecting m61 cosW2 t and n6 1 cos Wt,

"we have

ii=I+ IaI( .. cs' - s- j s in (sin5 " + '1Ck) cowt]I Cos sin in• + cos,

i12 
2ý1

I/•-cO'sl sincl sin, I+ co s4,
+ I o C 2 s i n w 2t 2 C ) ct]

(2.5)

From Equation (2. 5), it is eyident that the effects of the different frequency

components of excitation on the induced current are mutually independent.

The double-frequency case can therefore be extended to the multiple-fre-

quency input, and it can be concluded that the different frequency effects

are independent of each other, subject to the approximations made in this

section.

B. DRIFT REGION

Thus the electrons enter the drift space with both velocity and current

modulation. From Equation (2. 1),

-8-



e V1  ]d e V1 d1u-u - ios• (t-J -ii -cs~~ 2 /
Ut Uoo 1 2d•1u

-cOSW 2ztj

Resorting to approximation made in Section A gives

sin1 sin41

u u oal sin (tl - + ua sin2t01 1 uo o . 21 41.((21 2

Z o2

(2.6)
Putting

sin cb1 sin 1

2 2

I 1 q

22

where and are defined as the gap-coupling coefficients for the re-

spective frequency components of excitation, gives the time of arrival at

plane A 2 as

t 2 = tI + SI

u +• alp1 sin ltl- +1 a 2 •3' sin 2 tl --

For small excitations, we get

t2 = +1  U I .. L 2L sin t -a 2  sin -t I )
0 0•2 i 2

a9



dt 2 SI w Ial 1P w Ia 2ý
-= + -- Cos - Cos -dtI uS 0 itl W 22 1

The equation for conservation of charge gives,

i2 1 _ 2 1 (2. 7)

dt 2 dt 2  dIt1

dt dt dt
1 1 0

d1  51
Again tI =t ++r -t + ; therefore

0 0o U- T
o 0

dt d- i +-- 6

dto dto W-

as d is independent of to 0 and

1tIC 1 F) )
=t +-ýlsiný Cos cos (to+ - (Sinýl- ~ cos) sin (wto+K)

dto 20 L 04

+ [-sin coscp') - (sinclI ý' cos)n o+cP2 .0

As a result,

si (c t s'a 2 t cos t -
inz =os sin t +o t

a,+ [(I sin Cos Cos t+) (Sn
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[ sinp,' cosc,') cos t coscpI)sin 0+W 2 0i¢ l -S + ,

(2,8)
where

S WIS 1  _ '2'S 1SI -"u 0 SI 0

With

csi + = sin ( l l
Cos Wl 0Cos

and 'with approximations similar to those made previously, the current i2

can be expressed as a function of t, , and hence tz.

The periodicity of i. is obvious, and therefore i 2 can be expanded

in Fourier series as follows. First, t2 will be related to to, as follows;

=~~~ - -- C"l• sin itt2[to + - + -- 2 2 s-na2t1-sin t+
0 o L

i. e., the term 51/w° is neglected, while the approximations with regard

to the sinusoidal terms are justified; then

= 2 a + ar cos t2 - S, 1 + br cosn(Wt2  -

r=l r=l

where

W o S IW0od I
u 0- u a = 21

-11 -



and

1T
ar =V f . cos r(wtd2  - d(t 2)

Sdto

IT [ 0/

br cs r[wt -k sin (MW t + )k- ' sin (noto +  d( t,
Jo inrt-0 0 0 2 ' 2no 0 00

-IT

(2.9)

where

kl 2 ' 1 2

The coefficients a and b are simplified by a method indicated in Appen-r r

dix B,

The general equation of motion has to be formulated for the calcula-

tion of the induced current in plane A 3 , and the method adopted is similar

to that used in the first gap, with only the initial conditions different. This

is done later for the more complicated Gaussian spectrum and will be

omitted here. The main purpose of this section is to show the absence of

intermodulation of the different frequency components at the output, subject,

of course, to the approximations made. It must be stated that the preceding

analysis was based upon frequencies w I and w 2 not being very far from

the central frequency w 0 in the frequency spectrum, i. e. , the numbers m

and n should not be much greater than 1. As the main purpose of this study

is the extension of this analysis to the response of a klystron to short pulses

- 12 -



with a narrow bandwidth of frequencies, the assumptions made are com-

patible with the condition desired.

No account has been taken of the relativistic variation of mass with

velocities. This problem becomes especially serious when the beam voltage

is large in high-power klystrons and where the very hard X-rays produced

present an additional hazard to the operating personnel. A simple treatment

will be given of the relativistic effects on the response, using the same

'model as before.

According to Einstein, nothing can move with a speed greater than

the speed of light. Newtonian mechanics combined with this postulate de-

mands that a mass subjected to a constant force must be accelerated till

the speed of light is attained; but, as the force is still present, the speed

must still increase, which is impossible. This ambiguity is solved by ac-

cepting the increase of mass with velocity, and assuming that mass is a

manifestation of energy, the two related to each other by the famous equa-
2

tion w = c m, where c is the velocity of light.

An increase in mass, dm, when accelerated, results in c dm=

= dw = F ds, where F is the applied for~ce over a distance ds. Newton's,

second law gives

d
F = - (my)

dt

therefore

c fdm = (mv) ds = vd (my)

Equating the integrands and separating. variables, we have

dm v dv
m c 2 2 v 2

-13-



Assuming that rest mass equals m, gives, by integration,

m
m 0 (2.10)

c2

the equation that demonstrates the variation of mass with velocity. In this

case, Newton's force equation gives

d 0=eE

jwt
With u(z, t) = u0(z) + v(z) et, where

u(z, t) = total electron velocity,

uo(z) = d-c beam velocity,

v(z) amplitude of a-c velocity.

The basic assumption will be that v << c, which is justified, sinc~e

the signal voltage is not sufficiently high in practice to make the a-c velo-

city appreciable in comparison to the speed. of light. Using the Taylor

series expansion, we have

('u2) () /2 + veJC~t rU i _ (jo +

U u u
+ veJdt

(1/2/

+

/2.

- 14•-_



therefore

d + ve - -e E (Z.El)dt u 2 .2 3/2 in,

As the excitation is variational, separating Equation (2. 11) into, the d-c

and a-c parts gives,

0

d u- 3 /2 d 1 2 2

c2(
therefore

_0 e I cs1it +V2 cosw2 t)]

I-a ~ ~ ~ ~ V -C1C x d ,W

-1 -7

where k 3 is a constant evaluated from the initial condition that at t t 0o,

VlI a-c 0 . iFinally

vu2o/ e [Icoswlto coswit

Vla-c - 2 m od I Wo Io. W

V Cos :•0 o s 2o t
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The total velocity at any instant in the gap is

dz-- = u +v1
dt o la-c

Integrating again and using the initial condition that z = 0 at t = to

we have

3/2

Uo ~ V I cosw t V 2Cos W t0)
+ 2d+ 2 -+ (to}

C? m o d1t t( _ c 2 e/ d 1 (V sinColto- V1 sinwlto V2 sinc• 2 to V2 'i•t

2 2,

Now z = d at t = t =t 0 + rI. Following the procedure of Section A of

this chapter, and making similar approximations, we obtain the expression

for the correction factor in this equation:

8 = '1 l cos linA sin sin wIt + ( in l - Cos Co s Ws It

+C2- 1  -cos[1 - i" sinqPl sinw•t + (sin4,l -1 cosý' cos 1

S(. 12.l b)

Equation (2. 12b) is very similar to Equation (2. 4) and shows that the

correction factor is only multiplied by a constant (I _u2)" c when rela-

tivistic effects are included, Again, the total current induced as a result of

-16 -



the passage of electrons in the interval to t - ,and t 0 t is

I t

Sudt

t-r

Carrying out this integration as in the nonrelativistic case, we have

ucos4~sl 4 finc~( +co~sctl

i=I). o 21- ' S ")sinci 1 t 2 12 c cosw

cos 1  sin", ssin s I + cosp1

2  cos- • sin•,sinw 2 t 2 - ) cos+ 2 2ZlZ € 'I ¢

(2. 13)

From Equation (2. 13) the r.elativistic effects on the induced current

in the first gap are very clearly observed.. The explicit effect on the r-f

cuirrent resulting from electrons at high beam voltages subject to the simple

approximations made should be noted. For a particular beam voltage, the

r--f induced current is lower by the factor (1 u /c2) when the rela-

tivistic variation of mass with velocity is taken into account. A curve has

been plotted to show this effect (Figure 2). 3/2

Fdr low voltages and hence low values of uo, the factor I-uo/6)

is equal to unity, and the result becomes similar to that derived for the

nonrelativistic case. For uo/C = 1

0 0

""= 0.- 999



At a beam voltage of 104 volts,

S233/2

0= 0.94

.8

> .6

WJ0

a z .4
W.4

.2

3y4 56
10 10 I0 10

BEAM VOLTAGE EQUIVALENT OF VELOCITY

Figure 2. Graph Showing Relativistic Effects on Current Response.
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III. BALLISTIC ANALYSIS

A. FIRST-ORDER BUNCHING THEORY

The problem under consideration is formulated as follows: A beam

of parallel electrons which have been accelerated through a potential of V 0

volts is passed through the grids of a resonator across which there appears

a voltage V e-at2 sinwtw,%. The resultant electric field is assumed paral-

lel to the electron motion. Since the velocity of an electron is proportional

to the square root, of the voltage through which it has been accelerated, the

velocity with which an electron emerges from the first:, or bunching, resona-

tor of a two-resonator klystron will be 1

Va U l + _IV 1 e-.at sinwt, v= 1+ e sinýwt

where u° = • V is the d-c beam velocity, i is the gap-coupling co-

m 0 a-opig o

efficient (taking into account the effect of the gap transit angle), and aI =

V1/Vo. - Here P, may not be related to the gap transit angle in the same

way as for the sinusoidal case, but it obeys the general definition of the

ratio of the velocity gained in the real gap with V1 across it to the velocity

gained in an infinitely narrow gap with V across it and,, as such, is always

less than 1. The time taken by an electron to move a certain distance along

the beam depends upon the point on the cycle at which it passed through the

resonator gap as well as upon the magnitude of the gap voltage. If SI is

the drift length, to, the time at which the electron leaves the first res~ona-

tor, and t2 the time of arrival at the catcher-; then

-19 -



S1
tZ = t +

u ( + all 1 e sinwt

Now, if the modulation factor a is small compared to unity; then the fol-

lowing approximation is reasonably valid:

S1  al 2 o at
t2 = to, + 77 2(e sinw

0

To find the current associated with the electron bunches,one must

remember that the principle of conservation of charge applies to electron

bunches for an interval with corresponding departure and arrival times. The

electron stream is subject to the conservation of charge, so that

I odt o Ji2zdt2I

where i2 is the catcher current; hence

I
0

2 dt 2

I
0

F2 2
1+ -L [ at -at

u 0 2 0- cst)J1

0

(ae 2 W2  aO -ae42/Wa 2 )

I k cos 0 -2 0 e 0 sin (

-20-



WS1  As this expression
where the bunching parameter, - -- S A ss

IT 2 12

is aperiodic, it cannot be represented by Fourier series, contrary to the

analysis carried out by Beck for the pure sine wave. Since the catcher re-

sponse is desired, it has been found convenient to plot the output current

versus t 2 for different bunching parameters, similar to the treatment

given by SpangenburgI for the sinusoidal excitation. Since i2 = f(O) =

= f(-e ) the curves are expected to be symmetrical. If the Gaussian spec-
0 at2

trum is represented by V e- cos wt, then

I
iZ= 0

2 2 a0 -a / 2
1 + k [eaeO/W sine° + 2--O *e coso]

'In this case i2 = f(O) f(-). For negative values o~f e0o we have

I

2 _~a02/W2 aO O2 /(02

I -k 0 .-sin e + 2 -- co-se

The choice of a/W2 is governed by the following consideration. The
2

envelope has "its maximum value at t = 0 (since the envelope is V e- at cos

wt) and is supposed to fall to i/e of its maximum when wt = 107, so that

10 r-f cycles are enclosed between the points where the amplitude is 1/e

of the maximum value; therefore

__a (lOir) 2 1a _

2 W2 (107)-2



Graphs have been drawn for the output current versus exit time for differ-

ent values of bunching parameter for the envelopes V e-atZ sin2 t, and

V 1 e-at2 cos wt. In the first case the infinite peaks occur for values of

0 satisfying the transcendental equation,
0

ca0 o 1 aOZ

(c05 o sin) = e

The values of 8 at which infinite peaks occur are found graphically: For
0

k < 1 , there are no infinite peaks, as is evident from the equations also

(Figure 3); for k = 1 , one infinite peak occurs (Figure 4); for k = 1.5,

there are 14 infinite peaks (Figure 5); for k=2, there are 18 infinite peaks.

This can be justified as follows. In the pure sine-wave case, two

infinite peaks occur for k > 1 ; hence, for simplicity, we associate two in-

finite peaks with two peaks of the excitation signal. In the Gaussian en-

velope, the seventh peak occurs on either side of t =0, when wt =+ 6 .5iT.
-at

2  0 0

When wt = lOT, then e o= i/e; therefore when wto = 6 .51, then

-at
2
O 1

e
0.42.5

e

The response for k = 2 has not been actually plotted, for it, is not ex-
pected to be very dissimilar from the k = 1.5 response plot. The num-
ber of infinite peaks, however, were determined by finding the points of
intersection of the curves:

/ aO 1 a0 2

os -2 - sin 0 and I e
o • 2

yCo 0 2 e- ) ad-
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Figure 3. Output Current i2  versus Exit Time wt2 -S.

25-

V=V, e-~ Sin wt

20-

z

z
w

I- 10

0.

5 -

0

-9r -8r -7w -67r -5wr -47 -3w -2r -r 0 w 2w, 37, 4w 5r 67, 7r 8w 97,
EXIT TIME co t2-S

Figure 4. Output Current i 2  versus Exit Time wt 2 - S.
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Figure 5. Output Current i2versus Exit Time wt S..
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Figure 6. Output Current i2  versus Exit Time w~t2 -S.
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The value of k when wt = 6, 5 w (if k = 1.5, when t = 0) is

k 1.5 _ 1.5 -1
6,5 - e 0 .4 2 5  1.5

Hence, 14 peaks are. enclosed in the region for which k > I.

Again, the ninth peak occurs on either side of t = 0, when Wt 0 8.5w,

so that this region encloses 18 peaks. The value of k at: wtO = 8.57 (if

k0 .= 2, at to =0) is

k8.5 T.e0 7 2 5  2.02

Thus, the occurrence of 18 infinite peaks for k = 2 is justified.

If the envelope is V1 e -at cos wt, no infinite peaks occur for

k <1 (Figures 6 and 71). For k= 1.5, there are 12 infinite peaks (Figure8).
2.-at2

This has also been justified by a process similar to the V1 e sin Wt

case.

B. KLYST.RON RESPONSE WITH VARIABLE GAP LENGTH

From Newton's equation of motion,

2 eV 2
d z eI -atm e ,cos ,itdt d

hence
tV

dz _ e I -at2
- = - e cos wt dt + Cdt f md

where C is a constant,' When t = t ' then dz/dt = u° Thus,
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t
te VI -atZuo 0m id e cos wt dt =C

from which

dz r eV1 at2
- =u + - e cos wt dt
dt om

0

hence the exit velocity uI from the first gap at t = tI is

F eiV1 atZ

u= u + . e cos wt dt

t
0

The timeof arrival at the catcher, if SI is the drift distance, is

S

t = t+

eV 1  r -at 2

u + _ e cos wt dto md
t

0

therefore

(1 e 1 -at2
t + S I mu e, cosTt dt

t 0

Here an approximation will be made to permit analytic-al computation:

t = t + r, where the transit angle r is (d/u 0 ) + (64))

We assume here that 6 = 0, so that r = d/uo. Again for small

modulation, the following expansion is permissible, at least for a first ap-

proximation:
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t +2r( _

_t +e - ate costdt2 o u0 mdu f

to

dt2  S eV [ -a(t +r) 2  -at 2 ]
e = + 1 1Lcosw(t +r) + e 0cos 1 jto

d+2 mdi 0

0 U

U d To

where 4, =cd/u, and k' SýC1 /2 hence,

e-a 2e+•) -- 0 2 1o
dtz' k W 0-' cos 1 +e 2 o Co
dt2 0 ~ F-( ~ 2o 0eJdt = 1 - e- coS(eo+4o) - e cos

thus

I I
S0 0

[e_ a (-o+ý .)2 a

dt . 0 2 j0 -- k' W WZ
e cos (+p-e Cos

The above expression for i2 , though approximate, does give an idea of the

catcher response at least for small signals.'

The expression for i 2 becomes a poor approximation for large gap angles
also. The graph of i versus 0 with ý = 7r/2 has been plotted (Figure2 O10), taking k = 0.5, and 1.0; and tRe difference between this and the first-
order bunching theory is obvious. It has been found convenient to plot i2
versus 6 , in this case, rather than i versus 0., as we are only in-
terested in an approximate estimate of fhe response curve.
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C. RESPONSE WITH FIXED ENVELOPE AND VARYING FREQUENCY

Using the first-order bunching theory, and taking k = 0.5, we have

plotted the catcher current response for a fixed envelope for three differ-

ent r-f frequencies (Figure 9). It has been found that the shape of the

response envelope is almost independent of the change in frequency, es-

pecially at high values of cw/Na-.
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IV. LARGE SIGNALS AND FINITE GAPS

The ballistic analysis for large signals with finite gaps is carried

out as follows., Analysis is based on a two-cavity klystron (Figure 11).

A0I IA A2 1 IA3

I I
ELECTRON I

BEAM GAP GAPI I

I I DRIFT REGION

I I I I________ I I

I - I

Figure 11. Schematic of Model for Velocity-modulated Tube.

In the diagram, Ao0 Alp AZ, A3 represent the four planes under con-

sideration. The numbers 0, 1, 2, 3 will be used to identify quantities in the

respective planes.

A. FIRST GAP REGION

1. induced R.-F Current

Confining our attention first to the motion of an electron in the first
2

gap, excited by a Gaussian pulse VI e-at coscwt, and applying Newton's

second law of motion, we get

2 eV 2
d z I e -at C s-- e cos ot

2 md
dt
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therefore

dZ K KRee-at + jwt dt + C
'dt 1 K 1e

= K 1 e 4-a R. "e - a] dt + C

where K= eV / and C is a constant., Now at t =to dz/dt t°

from which C is evaluated; thus

2t
aA (t jW2

dz K1 e Re ee dt + u

t
0

oU + 1 ew2 /4a-• Re erf - erf (o- ")

(4. la)

K- e -.W+ ~ 2 / '4a~ 2 2,,f-a2 2
dz( [eat )
S-- ..ue" rff-t-erf ' t + e Y sinqatydt o0(t 0 F

-(at0-2)sin 'a1ty dyJ1  (4. lb)

Integrating again, we get 'A

Z uot+K -- e-w 2/4a rf t-erf t + 2 [e(at2 )sin
0 2s u 0 ety2 o

0

-(at2 y2)

-.e- t sinN•°- • t dy dt + C0

.32-



where C 2 = constant. This constant is evaluated by using the condition

that at z = O, t = t ;therefore

t t 2g -K •2(at-y_ dt

z =U (t-t) + K - 2 /4a erf ?tdt+ e- Y)sinNra'ty dy dt
f t oo a

0 0t

/W

(-2 -(at - 2)S2 t+ 2 e 0 sinWtoy d

0 (4. 2)

When t=tt z = d Also the transit time is = t1-to; therefore

1W
" ~tl tl -,,77

-1 e-• /4a erftdt e Y )sint/a-ty dy dt

I.. d 1 o 1 2- a T

t o
0 0

2 2
K /4a 2 -(at.y

1 F2 e /4r rf to + - e 0ysinr y dy dt

0 (4. 3)
d 6

Suppose r - + , where 6 is the correction factor; then wd 1 /uo=
I u IA 1/u0

= is the d-c transit angle. From Equation (4. 3),

ti t1 2qf-

et 2  erf2-d 2 e- 2a 2 dt
/tdt+ - (at Y )sinNa" ty dy

t t o
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W

N 2 2 Nfa 22
K e- w/4a -(at" y

I e + 61t erfr'to+ e 0 sinN'~at y
2 Fa uera0 NF f

0

d 6
Writing tI as t and replacing to by tl -!I ̀  tl o - I , we get

•t t z4

I 7r ew /4a 2 e-a y
5 u Fa -erf~-t dt + -7e- (t s in'r-t ydy

d 6 d 6o
1 1 1 1

T, e-w /4a et rdlZ __

K u u 01 ot

2 oa d 1]

+ e 0sin Nr- t .
2

0

2u fa 0
0

In Equation (4.4), 61is implicit, and approximation must be made to obtain

an explicit expression for it.
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We shall assume that 6 is small so that

Rederr ' -(te dl -

erff [- ea- (t../i _

l[NI~j~) 2~ - L/
where

Now as 1 is small compared to t, the following approximation is justi-

fied:

t

( erf]'~atdt = d(.__i +t

d u
t - 11

0

/e-at Z~iJ'yyt= -o+-! (at2 - 2
e-(at -2 )injat dy dt + e- Y )sin NIaty dy

d 1 5 1 0 0

t ....
U (0

0

Substituting these in Equation (4.4), we have

2

= -=,l/a e dl + I Re )]rf t-

1 -5)-
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2K a__ r dl) 6~ d,)1 a1 (e~rL!Tw)~ [er1 (% J)
2o [q e -Re e ,]-

W -2

(Ad)

4a _/~' N 1 dRIe ef dN _ erfIJ"R .e e rof t -- .(t

This equation obviously gives a quadratic in 51 . which might be complica-

2ted to solve. For a simpler solution, we will neglect the 61 term.; there-

fore

2

1 4a 1 ( ) -
2 a uR a)]

r ~2(A
L 1 + -- e 4a e

0 -1Sq:efe rf f -
-- 2NI/• + Luf ( -l 11\I

S~(4.5)

Thus Equation (4.5) gives an explicit expression for 61 Denoting

2

(Ft) - \e 4a 1Reterf q - erf [)Ja
2 a) uý

2

G (t) -F- e 4a R.e erf. a]- d2 2uI \ 2.NK

gives

F(t) (4.6)i + F(t) + G(t)
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According to Ramo's theorem, the current at time t resulting from the

charge entering the gap in the interval dt between time t and t. + dt is

I

dil - u dtd 0

where u = velocity at time t. The total current induced is

t

i = I/dI fu dt°
t-P 1

Substituting Equation (4. ib) in the preceding integral, we have

t 2 7 -o

_ ( + F- e- erff'Ja-t - erfVa-t + 2 e-at y nia- ty0  ai

- e ,sin •'"tyd

0 22 s f

= d- , P+ "- e rf'•i~t+-k e(t-Y~iN
0

-.- y-• r erfNZtodt +-L. f .to in,,toy dy dt0 ;

therefore

10 Ki d t 2

kuin)&(aK 2 sin y dy
- ree -rf r- 4a 2 e-a? - {siNa-ty -Y d nvay

1'°i uo-+d-- d- +- e efJ/at+ 0if- e 4o a 2-37-Va e rf Nra~-3t07t - esiNEt0yd t0



2 t 22a(at

!- e 4a erfTa tdt + 2- sinNfa.toy dy dt

t-ri t-rJ
(4.7)

The above expression is considerably simplified if the following approxi-

mations are accepted as valid:

t

ferfrt dta = erf Ta- t

(00
t-I"

t 2a• 22'
Y 222

e 0 sinat 0 ydydt 0(=t rI e-(aty )sinf ty dy

"tr 1 0

This is very nearly true, especially for small gaps; then, Equation (4. 7)

reduces to

ii 1I=Io +

I + -F(t) (4.8)1 + + G(t)

It is interesting to note in this case that the time-dependent component of

current i1 is directly proportional to the correction factor 61.

A more accurate simplification of Equation (4. 7) than that given by

Equation (4. 8) is obtained if

JerfN4"to = er a-

t-F-
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c:_ r1 e rf NT

Putting this in Equation (4. 7), we have

I u 
/K 

z

S 21 a a

10 -° d -- e d j . e ft-

- erU-

After expansion in a Taylor series, we get

2 22 - tI uK 6 1 K w Na-• j1

i =I +•° K-• e e dl + eja

- 0 u~L~K ~ +jet t

I V u 2V
0K e-aat z

I + u+ V e Cos 1

(( 9

If the V term is neglected,

0 2e 0

2 el1 0 caty Moultationo + e- Cos Wt + d e- coswo
Io+dl 2V° 4V t)

- 39

where V = d-c beam voltage =-n- u.
0 2e 0

2. Velocity Modulation

From Equation (4,1a), we have

2

v' V =U ° + I.. e- 4a R ~e [e rf N/- t I j a e r f •a-j
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Making suitable approximations to simplify solution gives

N4a tI JW
2,4£ 2"d (4a- t " 1

2 eftt dt 2--Fa +d ÷ e2'

([T u 0
N at jW

0 2,4-T

from which

K1 -at 2V- d + e cos wti . (1. 10)
Uo o2u U

This is justified if the gaps are very short and the transit time small. For

larger gaps, a better approximation would be

•at jIA

z dt t uo 2 + "

e£ t dt+t-

0 2Wa-

then

d 2
1 2k± +i Njý e (luo co (wt, 4.

(4.11)

The neglect of 8 in the exponential is reasonable when the resulting simpli-

fication in computation is taken into consideration. Note that when 5 1 0,

Equation (4. 10) reduces to
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V V -at
= 1 + e Cos Wt1.uo ZV°

00

an expression similar to the velocity modulation in the sinusoidal excita-

tion case.

B. DRIFT SPACE REGION

The electron beam enters the drift space with both velocity and cur-

rent modulation, as shown above, and it drifts in a field-free space resulting

in further increase in the harmonic content of the beam current.

Neglecting space-charge debunching, we have t = t 1 + (S 1/Vl),

where S is the drift length; therefore

I. S1

t 2=t I +

u°I + I• e- 4a- ie r t1 (la-at " err (ato

u +2e FaI

Using the simplified expression in Equation (4. 10) gives

~S1
t 2 =tlI (4. 12)

dl 11) atiu F +r( -- + q - costJK, ( e Cos Wt

Using Equation (4 .11) results in a slight modification:

d + + c

22 u
-(4. 13)
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This expression for small modulation becomes

S K- d l 8 .e -a

t = t + o I Uo

It is difficult to differentiate this function because of the presence of 5

It is better to keep the integral in the expression for dz/dt rather than

divided into error functions; thus

S

1

K1  -a(t ;-
u + 1+- e Re e dt,

0 0

t0

2 .ý2
S K -- a (t

- t 1  1 2 Re eee

o 0
dtt

dt 2 - cos 2 t 1 a- e c[( l t
1 e 1 co0 1  o

assuming that

-a u 
-a t o

e cos((tt 1 -0 c (). = e cos (wt1 -C1)

G. 14)
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therefore

= iI i1

2 dt2
i2 

ddtl S t2-a ( ,-
dtV1  -at 1  t

Io-- e Gas Wt Cos (Wt
2d V 1

But by Equation (4. 7), iI is related to 1 ; therefore theoretically, it: i.s

possible to express

i2 = 1° f(t 1 ) , (4. 15)

where f(t,) denotes a function in tI . Again as t2 is related to tI, as

shown above, it is possible to express i2 as a function of t., i.e.,

i2 = 10 g(t 2 ) . (4. 16)

Although Equation (3. 16) is expected to be very complicated, and rigid

mathematical analysis seems highly improbable in practice, a theoretical

formulation is not ruled out. It is desirable to expand i in a series in

such a way that the various frequency components become distinguishable,

but the obvious aperiodicity of i2 rules out the possibility of expanding in

a Fourier series, as in the sinusoidal case analyzed by Beck.

C. SECOND GAP REGION

At this stage, attention will be directed to the motion of electrons in

the second gap. The beam induces a voltage on the grids, and because the

voltage produces a change in beam current and velocity, we can consider

this behavior as a reciprocal relationship, so that knowing the effect of the
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voltage on the beam is equivalent to knowing the effect of the changing beam

upon the induced voltage. With this in mind, let us assume the voltage in-

duced in the 'second gap to have a spectrum given by the equation V2 eb(t+ p)2

cos w(t+p), where p is a constant introduced to take into account the
-_at

2

possible change of phase with respect to the original envelope VIe cos wt.

Although this assumption might differ from the actual physical conditions,

it is acceptable as a first approximation. The equation of motion in the gap

can therefore be written as

dz z K e~-b(t+ p) 2

Kt e-*cos wo(t+ p)

dt2

therefore,

dz K e -b(t + p)2 cos w(t + p) dt + CF = 2 3

where C 3 = constant. Now at t = t?

2 /

dz u+ K1 ee f t -erf 4to a-7 R~e er a t1

dt a 0

Using this condition to calculate C3, we have
t

K2  e-b(t+p) 2 cosw•(t+p) dt + V2  (4. 17)
dt f

t2

where

W2

V2 i a e Re erf (4Y - -erf (,t°- t- -
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Integrating again, we have

t

z =K 2 e-'(t+ P) cos w(t+p) dt+V 2 t + C 4  , (4.18)

t2

where C = constant. At t = t 2 , z = dI + S ; therefore

t t

z=K 2 e-b(t +p)2cos w(t+p)dtdt+V 2 (t-t 2 ) + dl+S 1

t 2t

Now at z= d2 +S 1 + d ,wehavet= t 3 . Also t3 - t is the transit

time in the second gap; therefore

t 3 2

d K2 e= K Re rf It +p) - erf - dt +V 2 r2
Jt-r 2

Suppose

*d '2 wd22 22
r and V 2

2 2

where 52is-a correction factor for second gap. Then, by a process similar

to that used for the first gap, and with similar approximations, we have

LK2e- Ti1
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2

+e (R.e erf [N(t+p) -j2-

-erf [NG(tZ+P) j_ + d2 - erf 1 [(4

6 N - 2 (t (4. 19)u

• 2(t)62 = - ,(4,. 19)

22

F2(t)
I + •z + Gz )

where

2
(4)

K- ' Re [erfFN/•-(t+ p), - i ~ erfr (t 2 +p)- (Fwe(t) - 2v e2 J
2

2

G 2  'M e ] _____ erf 1L[-(t 2 + P) -"•"G2'(t) -2v 2 bv 2NE

Thus, the expression for 65 is very similar to that for 65.

As before, the total current induced as a result of the passage of

charge in the interval r is
2

t

i - -u dti3 d -2 u2 2t

-2

whereu 2 .islthevelocityatanyinstant t in gap 2; therefore

t

13 Uz dt2(, t

-6z I
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t t
I 2 dt2

d t-r 2  r 1tr1

where u is, as usual, the velocity at any instant t in the first gap. As

we have seen in the above analysis dt./dtI can be expressed as a function

of tI ; therefore

t t
I dt

i i dt1 uzdt2 udt
d Td 2  dt 2  f 0

t-r t-i

This analysis can be extended to n gaps, and n-i drift spaces; under

these conditions

dt I dt 3t t t

n dt 2 "' dt4d U(n-l) dt 2(n-1) U(n-2)dt2(n-2 udto
d d d 2 (-) n, i-1 21 n trn t i 1  tj-tln t-n-i t

(4.20)

Expression (4. 20) is of theoretical interest since it indicates the dependence

of the final current in the output gap upon the excitation imposed upon all

other gaps.
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V. NONLINEAR SPACE-CHARGE WAVE ANALYSIS

Here also attention will be directed to the Gaussian excitation,

since the behavior of an electron passing through alternate gaps and drift

regions with sinusoidal excitation in the gap has already been determined.

Mclsaac 3has derived a general expression for polarization in the drift

region. Using his symbols for the input gap and the drift case, the polari-

zation ZI(TI, T0) in the drift region is:

ZI (T 1  TO) : - F I O(r+T°) sin(Tl -r) dr

•~y .eTcos -
For the Gaussian case, O(T) = Ae cr

r
F -y(r + T

zI(T T 0 i Ae cos o-(r+To) sin(T1 r) dr
2D

0

Replacing the sine and cosine terms by exponentials and defining

x X-2

erf x - e dt

0

we have

A j~F T T ~ ~7(+ 0l1erf F4I- (y'Z(T, T l (j e e er [ 0-yr+ zNiJ Y oj

-j y j +-I-je~ eJ {erf [r+TO0)-j'Cl ],P-Y Jerf[ y• T°0-j (rL> •Z-J
ller ( [ 0

complex conjugat . (5 1)
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For the input gap region,

T

Z (TT (r + To ) sin (T -r) drZI(IT° - D f•
0'

therefore, for the case under consideration:

ZI(TIT) = - eejT erf T-j Tjerf (if0
76,

\2

{j-4 -Terf [NT -~ erf [/TO (o+

+ complex conjugate) 1(5.2)

A method will be indicated to express the complex error function in

terms of real integrals. Consider the expression,

a-jb

2
erf(a-jb) e dz

0
2

in the complex plane with z x + jy. As - e-z is an analytic function,

f(z) = 0 around a closed path ofintegration. Hence integrating along the

path shown by the arrows gives

a b a-jb

-x -( 2e dx- j e Y)dy= e dz

0 0 0
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Figure 12. Gaussian Envelope.

from which

erf (a-jb) -2•. J e-x dx _ j.f,. - (fe-a2"_Y2)+2jay dy

0 0

b b
= erf~x) 2 -(a 2  22 2 2ad

erf(x) + -•f e- (a-y2) sin Zaydy - j 2 -(a -Y)Cos 2aydy
NF

0 0
(5. 3)

As the polarization has to be a real quantity, and noting that T = T - T1

"=T-Z = T- Z+ ZI, we have Equation (5.3) written in the Z, T co-

ordinate system as follows:

/ (oC-1)Z

Z6(Z, T)- 2Re A e ejT erf (0-1)

1 ~ L6r 1r 2 1

. erf F,7(T- Z + Z,) -j - ]

(a-+r)
2

-je 4--e-JT)T erf L•(r+T'Z+Zl) -j (oT+)]
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-erf k(T-Z+Z)-(-r-1) 1 (5.4)
71, Tf

where Re represents the real part. Equation (5. 4) is obviously implicit

in Z and hence cannot be evaluated easily,

Assuming Z1 to be small, a series expansion of the complex func-

tions will be made, and only the first-order term in Z1 will be taken into

account. A typical term is expanded as follows:

erf [,y'(r+T-Z+ZI) -j ( )0

L 2•2
-erfK(r+T-Z -j!ll1 + •Fz 1 erfl' F'4-(r+T-Z) -j (._-__]

4}(+-Z)- 7 J, [

where 2

e = e-17(r+T-Z) -j J
erf1 I e L Py-

Substitutihg in Equation (5. 4), we have

Or - 1) 2
A IF F -.y (T--IH

(Z, T) R - A Re je eT rf r+T-Z)-j1' 8 2•-L

N17 z1 e L(r+T -Z) -j ()]1 F(y (a-i
+ zI e- - -- - rf (T-Z)-j-rf

(T - Z)0- 4- 51 - 2

+ z/ Zle-Y .j ~ ~Tef rT-Z
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-.•(rm- Z)-j

' ,

_j~if + Nr/7 z1 e [/r+z)i2'F J erf F~;(T -Z)

..j {~il]+ N17 Z e .2 r II (55)

Now, putting

N/%(r+T-Z) = a1  , q-(T-z) = a 2

(0--i) -, b,-i - b 2

in Equation (5. 5), taking the real parts, and transferring Z to the left-
1

hand side, one derives an explicit expression for Z as follows:

z (Z, = A e 4 (rf(a2) erf(aI) + 2- (a2y2)sin 2a 2 y8 Fly

-e sin-2 d sin T + c 2a y

y 0

1)2 2 d+

-e cos2aZYdy d cos T + e T erf(aZ)-erf(a I

+ 2_ Lea2Y )sinzazy - e- ( n 2aly dy sinT
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2 ) 2 b2  -2 

2 j2 f (a 2) _ (aIb_)c
+-e COS Za2o y dy . cos

0

-,(a 2- b 2) a 2; d 2)s+Asab -e s b 1 cos 2 
A 

sn s

2- 2) 2' (T_1

+ (a b 1 in 2aI b {Ierf(a 2 )-erfsi a1 )F 2 b 1])-F0a 1 T )

S(a 2_-b 
- (a 2_ab 2)+e- 1 2! ra b2 b -er 2 2+ Cos Za2 b 2  sin T

2 2 c o s 
( a _+ -5 3 -[e- (a _b2sn2 1b2 - e ,(a' ,O b 

"2

if b

e - m ) sin,2 ga y dy = F(am n

0 
b

-2 e n. cos2a y d a ,b

then

ZI(Z, T) IT (e • -- 4- erf(a )-erf(al)+F(a2, b,)-F(al,bl) sin T

+ [(a,, bl f(a b,) CosT

(• i 2

e' • ([7erra) e f(a,)÷F~a , b -_F al b2 sin T

+ e [rf~a ) 2 2 (a 5, 2)



++ If , cos2) )alb bsa2b]1 sin.T
82

A- )( aa-b

1 1 )Cos 2alb e - e2 sin T2_2(2 2)sn a bjo T e ) -1

(5.6)

Now putting
+ [e a+ T - Z + Z-) = a 3

q-(T - z + = a4

e a•.m~ nsingambn= G(am,br)

we obta e (on sacoB Iambn = g(am, bnb)

er(am.) - erf an = E(ambao)

Nwe putting

(- Z,.) =A g (a4,b)gab1+ 3 b)fa~~~ sinT

4yT( 8 + Z a4 1  J

+ {f[(a2 -b 2)~ Gab) Ea-4Fa 1 1  ~ 3 b o
-eT ( a bos)- 2g (a3, bl)] f(ay b-4 sn
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+ N [G(a b2 ) -G(a 3 , b2 )+ E(a 3 -a4+F(a3 b2 )-F(a b2 ) cos T

(~Z 1 4P 3J 3 14)i

A, 
b22 J (a3, bbg4 [b a b, bos

Tr +1 -- a 3)b1-Ga4?b s nTa31 4,T

+ e -b (a3, b-g(a 4 , b,] sinT + [G(a2, b,) G(a3b2 cos

(5. 7)

In Equation (5. 7), the term Z1 occurs on the right-hand side. To obtain

a ZI/aT at a particular Z and T, therefore, the value of Z1 has to be

obtained from Equation (5. 6) for the given Z, T, and then has to be sub-

stituted in Equation (5. 7). Thus, the ratio Ja c/Io can be calculated.

Now, from Equation (5.5)

IZ A ~- e1 iT

e-b {[e(a 4 , b)-glay b 2)] sin T + [G(ay b)-Gla4 , b)J cos Tb C

{[Ygý1a 3 b) 1(a 4ib) Ga 4 'b1 -~ 3, 1 )] T)N~

+ e b[-g(a 4 , b 2)+g(ay b)] sin T + [-G(aa, b)+G(a4 , b) cos T) Fy)

(5. 8)

$ince

aZ1 azl
dZ1 --- Z+

4) 3Z 2) T)

dT Z
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then

dZb
dj(e (a3,bl)-fa4b(ab)] sinT+ [-E(a 3-a 4 )+F(a4 bl)-F(a3 bl)J cos-dT 8 -Yý f 34 ) F z43)

-b
eb ?1 f(a 4 b,)-f(a3  b,) sinT+ ~E(a 3 7a 4)+F(a 3 ,b2 ) -F(a 4 ,b2) Cos T

(5.9)

The relative simplicity in the expression for

a zu Z

a 8T
0

is observed.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The ballistic theory of an electron beam has been developed, for

multiple signals, subject to approximnations made to simpfly solution.

Some work, using nonlinear space-charge wave analysis, has also. been

done and a comparison of the ballistic and space-charge wave analysis

should be attempted to throw more light on the problem. The graphic plot

obtained (Figure 9) which gives a value of 0.5 for the bunching parameter

indicates that there is pulse distortion. The saturation of the lower half

of the envelope indicates that the exit current is rich in harmonics, even

for low depths of modulation.

The theoretical study indicates that experiments can provide solu-

tions where theoretical formulation would be cumbersome. An experimental

verification of the theory should therefore be undertaken, us~ing a set of

parameters designed to approximate closely the assumption of an infinite

beam and no space-charge effects.

Attention is now being dii-ected to the generation of high peak-power

radar using nanosecond pulses of the Gaussian type. Once such pulses are

generated, the response of the klystron to them can be observed. Good

microwave amplification of these pulses would lead to their use in radars.
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APPENDIX A: A.NOTE ON THE GAUSSIAN SPECTRUM

As this report deals with the klystron response to a Gaussian enve-

lope, a short note on the Gaussian spectrum is useful.. The analysis pre-
2

sented has been. mostly based on the envelope g(t) = Ve'at cosWt:

at _0o e+j~t

g(Wo.)= Re fve-atZ e e dt

-a

a 2

- ~ -w)2  a + .a(t

VRe Ve dt

.'(OW )2 CL w) - wJ

0 ; -a (t+j L a -
=Ve 4a __1a dt

(W o 0 - ) 2'

! •- Ve 4a
Sa

Thus, in the frequency plane the envelope is also Gaussian. The

Gaussian envelope is evidently economical in bandwidth for a given pulse

length, the majority of the energy being confined to a finite range of the

frequency spectrum centered on the carrier frequency. These factors to-

gether with the fact that a Gaussian pulse is easier to generate, are the cri-

terion determining its selection for analysis. It might be interesting to note

to what extent the envelope shape depends on the parameter a. Consider

just the envelope given by the equation,

_a2.

f(t) = e
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then

2
0

o 2

Select a Tr/Ca., and multiply both f(t) and f(cwo) by i/N" ; then

Trt2

fet) 
-

2
0

g 1 ( °) e- 27r41

The-area under the curve fl(t) = e-at /N is given by

A = 2 iT g ,(wo)I=

w0 = 0
0

27r

27T

Therefore as a becomes smaller and smaller, the curve f (t) becomes

taller and narrower and approaches a unit impulse as a approaches zero.

Since a is inversely proportional to a, one must have a high value of a

to obtain short pulses. If the frequency is increased, the value of a has

to be increased also, if the pulse is to decay to a fixed fraction of its ampli-

tude after a fixed number of r-f cycles. Actually for this purpose the

2ratio a/W , where w = 2irx frequency, has to be maintained constant.

The transition from a frequency spectrum consisting of a series of
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discrete frequencies to one consisting of a continuous band of frequencies

can be made by treating the nonperiodic function as a periodic function in

which the period approaches a . The unit Gaussian envelope e- coswt

will be considered. The amplitude of the spectrum at wo, is

1 -Rat + .jwt -J 0 t
g() - Re e e dt

-a

For a single, pulse, w1here, f(Q),=,,9 all l.v!.e. .Qf t except - L < t < L

we have

2 z
(W -W). L (W -W 0 ")

a at -j]
e 4a Re e 2a dt

0()J 2

-L

- e 4a Re f 4a " L • + erf' .a" +j,

?it~a ) ~ (L+ a

where use has been made of the identity,

erf(-x) = -erf(x)

With the expansion for the complex error, functioh and then taking the real

part, one obtains

0)-

g(%) {f.d)L

g(w 0) = ... ,_ e 4a:,. (z.-erf 4a L)

0
a- 60e 4a.
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The -pectrum of a train of Gaussian pulses of length 2(L + AL) recurring

every T seconds will be foun~d from the spectrum of a single pulse of the.

train. For the single pulse at any frequency wo/21T,

0(W - 0o) 2

erfNrI (L +A L) e 4a

For a period of such pulses recurring with a spacing T I 1/C, the sum

of spectra of the individual pulses form a Fourier series of harmonics of

C ; therefore

f(t) = A + ZA cos 2TnCT

n=l

where A is the sum of an infinite number (one from each pulse) of infini-n

tesimal terms g(ZrnC) and g(- 2 TrnC), giving

Y(d- 2rnC)2

An = .erf (__L+AL) e 4a

To put an absolute value on the amplitudes g( 0o), it is necessary to aver-

age. them over the recurrence period of the single pulse, making them in-

finitesimals. However, in the train of pulses recurring every T = I/C

seconds, the amplitude of A can be determined by averaging the termsn

in g(wo) over an interval T• then
0

(w0- 2wnG) 2

A e r f va 1( L + A L ) e 4 a

A e 4a

Ti
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and when T =4L"-1

C erf L (I + AL) ( - 2(rnC)
2

C ~ ~ er4a 6 -•-:

A =_4a
n ir qa-(4LCT. 11

thus,

f(t) = A + A cos21TCt + A 2 cos2Tr2Ct + . . .

where A is known.
n
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APPENDIX B. FOURIER. COEFFICIENTS

The Fourier coefficients ar and br as obtained in Equation (2.9)

are simplified here:

a '-I co"rd

f cosr[y sin (' +sin (ny + dy

ITk sn(M !-

It is sufficient to obtain the solutions to the following coefficients, as they

are related to the ones in Equation (2. 9):

IT

a' = cos r y + c sin(my + a) + c2 sin(ny + a2 ) dy

-T1

br fsin r [y + c sin(my + a)+ c2 sin(ny + a2)] dy

-iT

al + jb' jr y + cI sin(my + aI) + c2 sin(ny + a 2 ) dy

r

a -Jr [yb + c 1 sin(my + aI)+ c 2 sin(ny + a2)] dy
a' - j = e

r r f
-IT

Now, according to the property of Bessel Functions,

e sin 0 J(Z) + 2 IJ2(z) cos 20 + J 4 (z) cos 40+.

+ 2 j [JI(z) sin 0 + J 3 (z) sin 30 +.

V - Jp(z) ejpe) (B. i)

p=- a
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since J -p(z) = (1.)p Jp(z) ; therefore, using the property in Equation (B. 1)

gives

jp(my + a1)
a' +br = ejrY[J (rc e, p q(rcz) e dyr r f z l) z

-IT P= q---a

fe~rY • (pm +qn) y + j (p al+qa?) d
= z 7  Jp(rc )Jq(rc 2 ) e dy

1Tr p=-a q=--a

Because of the nature of the integrand, the order of integration and

summation can be interchanged; therefore
CL a

jc J(pal+qa2 ) sin(pm +qn+r)
a + jb 2j (Zrcl) Jq(rC2) e pm+qn+Ir T

p=-a q=-a

Now, noting that
_-• _,m 1 . v+Zm v±2mlz

'z ej . .v + 2 m

j (_Z) = J (zej•) - nh±o = ejVT (-) Z)

V V m! r(v+m+l) E__, P(v+m+l)

j~wm M=o
since e jZm= 1, therefore

Jv(-z) = eJvT (Z)

Using the same procedure as before, we obtain

a' jb' 2j J JP(ral +Jqrc e2) sin(pm+qn-r)Tr
a' - Jbr = 2j ' Jp(rCl) Jq(rC2 ) + ci +' qn+a)s m q

r Y q(pm+qn- r)
p=-a q=-a

-64-



2j a a 1)P+q , j(pal +qa 2 ) sin(pm + qn - r)Tr
.= -1 p~ Jp(rCl)JqC)e

p. Tq( epm + qn - r
p=-a q=-a

from which

a' 2 j a a j(pa, + qc2)"
r p (rcI Jq(rc) e

p=za q=-a

((p+qn-r+qn+r)r + ()p+q (pm+qn+r) sin(pm+q-r)IT

2 2
(pm + qn) - r

bL a ) .j(pa, + qa 2 )Zb r4 2 p rc 1) Jq(rc 2 )ep=-a q=-a

(pmn+qn- r) sin(pm +qn+r)r (-1) (pm+qn+r) sin(pm+qn-r) r

(pro + qn)2 rz

As r, p, and q are integers, a and b' will not be zero when m and
rr

n do not have integral values. It must be noted that for large values of

p and q, the quantity 1/ [(pm + qn) 2 
- r2] becomes small, and therefore

the double infinite series can be replaced by a finite series to permit com-

putation.
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APPENDIX C. EVALUATION OF erf(a - jb)

In the analysis of klystron response to Gaussian wave excitation,

complex error functions of the type erf(a - jb), where a and b are real

numbers, have often been encountered. Here, a method will be indicated

to express the complex error function in terms of real integrals. Consider

the expression,

a-jb 2
2 / -z

erf(a-jb) i dz

0

in the complex plane with z = x + jy.

As e-z 2 is an analytic function, f f(z) dz = 0 around a closed

path of integration. Hence, integrating along the path shown by the arrows

in Figure 13 gives

a 2 b 2 a-jb 2

e-x dx-fe(a-jy) dy= f e dz ;

0 0 0

- (a,o) X

2
Figure 13. Path of Integration for the Function e-Z
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from which

a b

Sffb 2 r -Xe-a2 - y2 ) + 2jay dy,rf~a -jb) -e "- dx .. . . d

0 0

b b

erf(a) + 2 e -y ) sin2ay dy-j2 e - y cos2aydy

o 0

This representation of a complex error function in terms of real integrals

has been used frequently.

Some other important results follow:

b b
2 2 _

erf(-a-jb) = erf(-a) - f e sin2ay dy ea cos2ay dy

0 0

as

erf(a) = -erf(-a)

a-j b

erf(a-jb) - erf(-a-jb) 2f e -z dz

-a-jb
b

er~)+ 4 (a 2_(a y2
2 erf(a) + sin 2ay dy

0

which is a real quantity. This same result can be obtained by contour

integration around a suitable rectangle in the z-plane. Again
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b

2_2Jf[e-(a -y)si y
erf(a - jb) - erf(c - jb) = erf(a) - erf(c) + (a s

0

b-e _ 2 /e(C 2- y) Cos 2cy

e(c_ yz) sin2cy] dy + j Fle-

0

2_2
-e-(a -y cos2ay] dy

These' results show that a complex error function can be easily

computed, and its real and imaginary parts separated. Considerable sim-

plification in computation can result in specific problems. The asymptotic

expansion, for example,

2

erf(a)= 1 e + 3 + +.
a N (2a (Za) (Za) I

is convenient for computation when a is large.
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